Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Language
Year range
1.
Arq. bras. oftalmol ; 78(3): 158-163, May-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-753015

ABSTRACT

ABSTRACT Purpose: In the lacrimal gland (LG) acinar cells, signaling regulates the release of secretory vesicles through specific Rab and SNARE exocytotic proteins. In diabetes mellitus (DM), the LGs are dysfunctional. The aim of this work was to determine if secretory apparatus changes were associated with any effects on the secretory vesicles (SV) in diabetic rats as well as the expression levels of constituent Rab and members of the SNARE family, and if insulin supplementation reversed those changes. Methods: DM was induced in male Wistar rats with an intravenous dose of streptozotocin (60 mg/kg). One of the two diabetic groups was then treated every other day with insulin (1 IU). A third control group was injected with vehicle. After 10 weeks, Western blotting and RT-PCR were used to compared the Rab and SNARE secretory factor levels in the LGs. Transmission electron microscopy evaluated acinar cell SV density and integrity. Results: In the diabetes mellitus group, there were fewer and enlarged SV. The Rab 27b, Rab 3d, and syntaxin-1 protein expression declined in the rats with diabetes mellitus. Insulin treatment restored the SV density and the Rab 27b and syntaxin expression to their control protein levels, whereas the Vamp 2 mRNA expression increased above the control levels. Conclusions: Diabetes mellitus LG changes were associated with the declines in protein expression levels that were involved in supporting exocytosis and vesicular formation. They were partially reversed by insulin replacement therapy. These findings may help to improve therapeutic management of dry eye in diabetes mellitus. .


RESUMO Objetivo: Células acinares da glândula lacrimal (GL) sinalizam a regulação da liberação através de vesículas secretórias específicas Rab proteínas exocitóticas SNARE. No diabetes mellitus (DM), as glândulas lacrimais são disfuncionais. O objetivo deste trabalho foi determinar se em ratos diabéticos, alterações dos aparatos secretórios estão associados a efeitos sobre vesículas secretoras (VS) e sobre os níveis de expressão do constituinte Rab, bem como membros da família SNARE, e se a suplementação de insulina reverte as alterações. Métodos: DM foi induzido em ratos Wistar machos com uma dose intravenosa de estreptozotocina (60 mg/kg). Um dos dois grupos diabéticos foi então tratado a cada dois dias com insulina (1 UI). Um terceiro grupo controle foi injetado com o veículo. Após 10 semanas, western blot e RT-PCR comparou níveis de fatores secretórios de Rab e SNARE na glândula lacrimal. Microscopia eletrônica de transmissão (MET) avaliaram a densidade e integridade de VS de célula acinar. Resultados: No grupo diabetes mellitus , houve poucas e alargadas VS. Rab27b, Rab 3d e Sintaxina-1 diminuiu a expressão da proteína em ratos com Diabetes Mellitus. O tratamento com insulina restaurou a densidade das VS e expressão de Rab 27b e Sintaxina para seus níveis de proteína controle, enquanto a expressão de Vamp 2 RNAm aumentou em relação aos controles. Conclusões: Alterações na glândula lacrimal de diabetes mellitus estão associadas a reduções nos níveis de expressão de proteínas envolvidas no apoio a exocitose e formação vesicular. Eles são, em parte, revertida por terapia de reposição de insulina. Estes resultados podem ajudar a melhorar a conduta terapêutica do olho seco no diabetes mellitus. .


Subject(s)
Animals , Male , Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Lacrimal Apparatus/drug effects , Secretory Vesicles/metabolism , Acetylcholine/analysis , Acinar Cells/ultrastructure , Blotting, Western/methods , Diabetes Mellitus, Experimental/chemically induced , Exocytosis/drug effects , Lacrimal Apparatus , Models, Animal , Qa-SNARE Proteins/metabolism , R-SNARE Proteins/metabolism , Rats, Wistar , RNA, Messenger/metabolism , Secretory Vesicles/drug effects , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
2.
Experimental & Molecular Medicine ; : e22-2013.
Article in English | WPRIM | ID: wpr-158223

ABSTRACT

The accumulation of abnormal protein aggregates is a major characteristic of many neurodegenerative disorders, including Parkinson's disease (PD). The intracytoplasmic deposition of alpha-synuclein aggregates and Lewy bodies, often found in PD and other alpha-synucleinopathies, is thought to be linked to inefficient cellular clearance mechanisms, such as the proteasome and autophagy/lysosome pathways. The accumulation of alpha-synuclein aggregates in neuronal cytoplasm causes numerous autonomous changes in neurons. However, it can also affect the neighboring cells through transcellular transmission of the aggregates. Indeed, a progressive spreading of Lewy pathology among brain regions has been hypothesized from autopsy studies. We tested whether inhibition of the autophagy/lysosome pathway in alpha-synuclein-expressing cells would increase the secretion of alpha-synuclein, subsequently affecting the alpha-synuclein deposition in and viability of neighboring cells. Our results demonstrated that autophagic inhibition, via both pharmacological and genetic methods, led to increased exocytosis of alpha-synuclein. In a mixed culture of alpha-synuclein-expressing donor cells with recipient cells, autophagic inhibition resulted in elevated transcellular alpha-synuclein transmission. This increase in protein transmission coincided with elevated apoptotic cell death in the recipient cells. These results suggest that the inefficient clearance of alpha-synuclein aggregates, which can be caused by reduced autophagic activity, leads to elevated alpha-synuclein exocytosis, thereby promoting alpha-synuclein deposition and cell death in neighboring neurons. This finding provides a potential link between autophagic dysfunction and the progressive spread of Lewy pathology.


Subject(s)
Animals , Humans , Mice , Adenine/analogs & derivatives , Autophagy/drug effects , Cell Line , Exocytosis/drug effects , Extracellular Space/metabolism , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Phagosomes/drug effects , Protein Structure, Quaternary , Protein Transport/drug effects , alpha-Synuclein/chemistry
3.
Experimental & Molecular Medicine ; : e37-2013.
Article in English | WPRIM | ID: wpr-35842

ABSTRACT

The maintenance of whole-body glucose homeostasis is critical for survival, and is controlled by the coordination of multiple organs and endocrine systems. Pancreatic islet beta cells secrete insulin in response to nutrient stimuli, and insulin then travels through the circulation promoting glucose uptake into insulin-responsive tissues such as liver, skeletal muscle and adipose. Many of the genes identified in human genome-wide association studies of diabetic individuals are directly associated with beta cell survival and function, giving credence to the idea that beta-cell dysfunction is central to the development of type 2 diabetes. As such, investigations into the mechanisms by which beta cells sense glucose and secrete insulin in a regulated manner are a major focus of current diabetes research. In particular, recent discoveries of the detailed role and requirements for reorganization/remodeling of filamentous actin (F-actin) in the regulation of insulin release from the beta cell have appeared at the forefront of islet function research, having lapsed in prior years due to technical limitations. Recent advances in live-cell imaging and specialized reagents have revealed localized F-actin remodeling to be a requisite for the normal biphasic pattern of nutrient-stimulated insulin secretion. This review will provide an historical look at the emergent focus on the role of the actin cytoskeleton and its regulation of insulin secretion, leading up to the cutting-edge research in progress in the field today.


Subject(s)
Animals , Humans , Actins/metabolism , Exocytosis/drug effects , Glucose/pharmacology , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Signal Transduction/drug effects
4.
Yonsei Medical Journal ; : 70-77, 2006.
Article in English | WPRIM | ID: wpr-116917

ABSTRACT

Synaptotagmin is a Ca2+ sensing protein, which triggers a fusion of synaptic vesicles in neuronal transmission. Little is known regarding the expression of Ca2+ - dependent synaptotagmin isoforms and their contribution to the release of secretory vesicles in mouse and rat parotid acinar cells. We investigated a type of Ca2+ - dependent synaptotagmin and Ca2+ signaling in both rat and mouse parotid acinar cells using RT-PCR, microfluorometry, and amylase assay. Mouse parotid acinar cells exhibited much more sensitive amylase release in response to muscarinic stimulation than did rat parotid acinar cells. However, transient [Ca2+]i increases and Ca2+ influx in response to muscarinic stimulation in both cells were identical, suggesting that the expression or activity of the Ca2+ sensing proteins is different. Seven Ca2+ - dependent synaptotagmins, from 1 to 7, were expressed in the mouse parotid acinar cells. However, in the rat parotid acinar cells, only synaptotagmins 1, 3, 4 and 7 were expressed. These results indicate that the expression of Ca2+ - dependent synaptotagmins may contribute to the release of secretory vesicles in parotid acinar cells.


Subject(s)
Rats , Mice , Animals , Synaptotagmins/metabolism , Signal Transduction , Protein Isoforms/metabolism , Parotid Gland/cytology , Muscarinic Agonists/pharmacology , Exocytosis/drug effects , Carbachol/pharmacology , Calcium/metabolism , Amylases/metabolism
5.
Experimental & Molecular Medicine ; : 559-566, 2005.
Article in English | WPRIM | ID: wpr-191495

ABSTRACT

Amyloid beta (Abeta) neurotoxicity is believed to play a critical role in the pathogenesis of Alzheimer's disease (AD) mainly because of its deposition in AD brain and its neuronal toxicity. However, there have been discrepancies in Abeta-induced cytotoxicity studies, depending on the assay methods. Comparative analysis of Abeta42-induced in vitro cytotoxicity might be useful to elucidate the etiological role of Abeta in the pathogenesis of AD. In this study, MTT, CCK-8, calcein-AM/EthD-1 assays as well as thorough microscopic examinations were comparatively performed after Abeta42 treatment in a neuronal precursor cells (NT2) and a somatic cells (EcR293). Extensive formation of vacuoles was observed at the very early stage of Abeta42 treatment in both cells. Early observation of Abeta42 toxicity as seen in vacuole formation was also shown in MTT assay, but not in CCK-8 and calcein-AM/EthD-1 assays. In addition, Abeta42 treatment dramatically accelerated MTT formazan exocytosis, implying its effect on the extensive formation of cytoplasmic vacuoles. Abeta42 seems to cause indirect inhibition on the intracellular MTT reduction as well as vacuole formation and exocytosis enhancement. Following the acute cellular dysfunction induced by Abeta42, the prolonged treatment of micromolar concentration of Abeta42 resulted in slight inhibition on redox and esterase activity. The early Abeta42-induced vacuolated morphology and later chronic cytotoxic effect in neuronal cell might be linked to the chronic neurodegeneration caused by the accumulation of Abeta42 in AD patients' brain.


Subject(s)
Animals , Amyloid beta-Peptides/toxicity , Cell Death/drug effects , Cell Line , Dose-Response Relationship, Drug , Exocytosis/drug effects , Formazans , Neurons/drug effects , Peptide Fragments/toxicity , Tetrazolium Salts , Time Factors , Vacuoles/drug effects
6.
Journal of Korean Medical Science ; : S36-S37, 2000.
Article in English | WPRIM | ID: wpr-117529

ABSTRACT

Effects of intracellular Na+, K+ and Cl- on Ca(2+)-regulated exocytosis activated by 10 microM acetylcholine (ACh) were studied in guinea-pig antral mucous cells which are permeabilized by nystatin treatment. Ca(2+)-regulated exocytotic events were modulated by [Na+]i, [K+]i and [Cl-]i via mediation of PTX-sensitive G proteins. Increases in [Na+]i and PTX inhibit G protein (G(Na)), which suppressed the exocytosis. Increases in [K+]i caused the exchange of G proteins (from G(Na) to G(K)) to increase, and GK evoked activation of the exocytosis and was inhibited by PTX. Increases in [Cl-]i and PTX inhibit G protein (G(Cl)), which stimulates exocytotic events. Based on these observations, the exocytosis in antral mucous cells were modulated by intracellular ions, concentration of which were increased or decreased by cell volume changes caused by Ach.


Subject(s)
Acetylcholine/pharmacology , Animals , Cell Membrane Permeability/drug effects , Exocytosis/physiology , Exocytosis/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/cytology , Guinea Pigs , Hypertonic Solutions/pharmacology , Ionophores/pharmacology , Nystatin/pharmacology , Pertussis Toxin/pharmacology , Potassium/pharmacokinetics , Pyloric Antrum/metabolism , Pyloric Antrum/cytology , Sodium Chloride/pharmacokinetics , Vasodilator Agents/pharmacology
7.
Braz. j. med. biol. res ; 32(1): 59-65, Jan. 1999. graf
Article in English | LILACS | ID: lil-226214

ABSTRACT

The effect of peritoneal fluid (PF) on the human sperm acrosome reaction (AR) was tested. Sperm was pre-incubated with PF and the AR was induced by calcium ionophore A23187 and a neoglycoprotein bearing N-acetylglycosamine residues (NGP). The AR induced by calcium ionophore was inhibited 40 percent by PF from controls (PFc) and 50 percent by PF from the endometriosis (PFe) group, but not by PF from infertile patients without endometriosis (PFi). No significant differences were found in the spontaneous AR. When the AR was induced by NGP, pre-incubation with PFc reduced (60 percent) the percentage of AR, while PFe and PFi caused no significant differences. The average rates of acrosome reactions obtained in control, NGP- and ionophore-treated sperm showed that NGP-induced exocytosis differed significantly between the PFc (11 percent) and PFe/PFi groups (17 percent), and the ionophore-induced AR was higher for PFi (33 percent) than PFc/PFe (25 percent). The incidence of the NGP-induced AR was reduced in the first hour of pre-incubation with PFc and remained nearly constant throughout 4 h of incubation. The present data indicate that PF possesses a protective factor which prevents premature AR


Subject(s)
Female , Humans , Acetylglucosamine/pharmacology , Acrosome/drug effects , Ascitic Fluid , Exocytosis/drug effects , Ionophores/pharmacology , Endometriosis , Sperm Capacitation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL